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Abstract. We explore the consequences of introducing a complex conductivity into the quantum
Hall effect. This leads naturally to an action of the modular group on the upper-half complex
conductivity plane. Assuming that the action of a certain subgroup, compatible with the law of
corresponding states, commutes with the renormalization group flow, we derive many properties
of both the integer and fractional quantum Hall effects including: universality; the selection rule
|p1q2 − p2q1| = 1 for transitions between quantum Hall states characterized by filling factors
ν1 = p1/q1 and ν2 = p2/q2; critical values of the conductivity tensor; and Farey sequences
of transitions. Extra assumptions about the form of the renormalization group flow lead to the
semicircle rule for transitions between Hall plateaux.

The purpose of this letter is to explore the consequences of the proposal, made in [1] and
examined further in [2, 3], that the hierarchical structure of the zero-temperature integer and
fractional quantum Hall effects can be interpreted in terms of the properties of a subgroup of
the modular group,Sl(2,Z) := 0(1)—specifically the subgroup which consists of elements of
0(1)whose bottom left entry is even, sometimes denoted00(2) in the mathematical literature.
This group acts on the upper-half complex plane, parametrized by the complex conductivity,
σ = σxy + iσxx , in units of e

2

h
, and is generated by two operations,T : σ → σ + 1 and

X : σ → σ
2σ+1. If γ =

(
a b

2c d

)
∈ 00(2), with a, b, c, andd ∈ Z andad − 2cb = 1,

thenγ (σ ) = aσ+b
2cσ+d . ThusT =

(
1 1
0 1

)
andX =

(
1 0
2 1

)
. Some consequences of this

assumption for the phase diagram in theσ -plane were examined in [2] and in the second of
these references the author notes that there is a connection with the work of Kivelsonet al [4],
but remarks that the comparison between [2] and [4] is not immediate. One of the aims of this
paper is to explore the relation between these two approaches.

Following [1–3], it will be assumed that the phase diagram for the quantum Hall effect
can be generated by the action of00(2) on the upper-halfσ plane. This immediately implies
the ‘law of corresponding states’ of [4] and [5]. At Hall plateaux we haveσxx = 0 andσxy = s
wheres is a ratio of two mutually prime integers, with odd denominator (note thats is being
used here to label the quantum phases and is denoted bysxy in [4]). Plateaux can be related to
each other by repeated action ofT andX. At the centre of the plateaux, the filling factor,ν, is
equal to the ratios = p/q andT : ν → ν+1 is the Landau level addition transformation of [4]
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whileX : ν → ν
2ν+1 is the flux attachment transformation. The particle–hole transformation

ν → 1− ν, can be realized as the outer automorphismσ → 1− σ̄ acting on the upper-half
plane, wherēσ = σxy − iσxx (it will be assumed throughout that the electron spins are split,
for the spin-degenerate case one must rescaleσ → 2σ ).

The upper-halfσ -plane can be completely covered by copies of a single ‘tile’, or
fundamental region (see e.g. [6]), related to each other by elements of00(2). The fundamental
region has cusps at 0 and 1, linked by a semicircle of unit diameter, and consists of a vertical
strip of unit width constructed above this semicircle. By assumption, all allowed quantum Hall
transitions are images of the transitionν = 0→ ν = 1 under someγ ∈ 00(2), and hence also
linked by a semicircle.

Each such semicircle has a special point, in addition to the endpoints, which is a fixed

point of00(2) in the following sense. The pointσ ∗ = 1+i
2 is left fixed byγ ∗ =

(
1 −1
2 −1

)
.

Similarly the points obtained fromσ ∗ by the other elements of00(2), σ ∗γ := γ (σ ∗), are left
fixed byγ γ ∗γ−1. It can be shown that the imaginary part, Im(σ ∗γ ) 6 1

2 or Im(σ ∗γ ) = ∞, ∀γ .
The pointsσ ∗γ can be interpreted as critical points for the transitionγ (0)↔ γ (1) if we further
assume that the action of00(2) commutes with the renormalization group (RG) flow. For if
σ ∗γ were not a RG fixed point, we could move to an infinitesimally close pointφ(σ ∗γ ) 6= σ ∗γ
with a RG transformation,φ. Demandingγ ◦ φ(σ ∗γ ) = φ ◦ γ (σ ∗γ ) = φ(σ ∗γ ) then implies that
φ(σ ∗γ ) is also left invariant byγ . But the fixed points of00(2) are isolated, so there is no
other fixed point infinitesimally close toσ ∗γ . Henceφ(σ ∗γ ) = σ ∗γ andσ ∗γ must be a RG fixed
point. The end points of the arches, atσ = ν with ν = p/q rational, are also fixed points
of 00(2). Forq odd these are stable Hall states. Note, however, that a fixed point of the RG
need not necessarily be a fixed point of00(2)—but there is no experimental evidence of such
extraneous fixed points of the RG.

Thus the fixed points of00(2) must be fixed points of the RG, i.e. critical points. This

Figure 1. The phase structure in the upper-half complexσ plane. The solid curves represent phase
boundaries and the dotted curves allowed transitions. Points where dotted and solid curves cross
are critical points.
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Figure 2. A magnified view of the phase structure in the upper-half complexσ plane.

leads to the topology of the flow diagram of [2], reproduced here in figures 1 and 2 where
solid curves represent phase boundaries and dashed curves represent quantum Hall transitions.
This implies the flow diagram proposed in [7], with its experimental support [8] and is also
compatible with the phase diagram derived in [4]. Thatσ ∗ = 1+i

2 is a critical point for the
lowest Landau level was argued in [9]. Phase boundaries and transitions are represented by
semicircles in the figures, but this is not forced on us by the00(2) symmetry. They could
be distorted from this geometry, provided that all phase boundaries are copies of a distorted
‘fundamental’ phase boundary (running from12 to 1

2 +i∞) under the action of00(2). Similarly,
the dashed transition trajectories must all be copies of a distortion of the ‘fundamental’ arch
spanning 0 and 1. Note, however, that thefixed points are immovable. A useful aspect of
the semicircular arches used in the figures is that the intersection of any solid phase boundary
with a dashed transition is a fixed point of00(2), as are the end points of the arches (which
are rational numbers or points atσ = r + i∞ for integral or half-integralr). Any distortion
from semicircular geometry must leave the endpoints and intersections of phase boundaries
and transition trajectories pinned at the fixed points of00(2).

As in [4], the phase diagram generated by00(2) determines which transitions are allowed
and which are not. Thus, for example,s : 1

3 → 0 is allowed whiles : 1
3 → 1

7 is not.
All allowed transitions are generated by acting on the arch passing throughσ = 0 and
σ = 1 by some,γ ∈ 00(2). This allows the derivation a selection rule for a transition
s1 = p1/q1 → s2 = p2/q2, whereq1 andq2 are odd, and the pairspi andqi (i = 1, 2) are
relatively prime (for brevity we shall not always distinguish below betweens, labelling the
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quantum Hall phase, andν, the filling factor, except where necessary for comparison with
[4]—on the real axis, whenσxx = 0, they are the same). We shall see that a transition is
allowed if and only ifp1q2 − p2q1 = ±1.

From the above assumptions we have (relabelling if necessary)ν1 = γ (0), ν2 = γ (1).

Thusp1

q1
= b

d
andp2

q2
= a+b

2c+d whereγ =
(
a b

2c d

)
∈ 00(2). Sincead − 2cb = 1,b andd are

mutually prime, by an elementary result of number theory, hence (taking plus signs without
loss of generality)b = p1, d = q1. Similarly (a + b)d − (2c + d)b = 1 implies thata + b and

2c + d are mutually prime, hencea + b = p2 and 2c + d = q2. Thusγ =
(
p2 − p1 p1

q2 − q1 q1

)
and the condition detγ = 1 then requiresp2q1 − p1q2 = 1. The only possible exception to
this rule would be a transition fromν = n→ ν = m (n,m ∈ Z), which could occur by going
first fromσ = n to σ = n + i∞ and then in toσ = m from σ = m + i∞. In a real experiment
the maximum value of|σ | would presumably be finite, due to impurities.

One can determine sequences of allowed transitions as follows. Supposeν0 = p0/q0,
with q0 odd, is an allowed state, withp0 andq0 relatively prime. Consider the sequence
νn = kn+p0

ln+q0
:= pn

qn
for n, k, l ∈ Z, wherel is even (so thatqn is odd). Thenpn+1qn − pnqn+1 =

±1⇔ kq0− lp0 = ±1. Thus a transitionνn+1→ νn is allowed provided|kq0− lp0| = 1. In
this way we can, for example, generate the three sequences

1
3 → 2

5 → 3
7 → 4

9 → 5
11→ 6

13→ · · ·
· · · → 7

13→ 6
11→ 5

9 → 4
7 → 3

5 → 2
3 → 1

2
3 → 5

7 → 8
11→ 11

15→ · · ·
(1)

plus higher sequences obtained by adding an integer to each term in these sequences. Such
sequences are called Farey sequences and their relevance to the quantum Hall effect was
examined in [10]. Note that a given experiment may jump from one sequence to another. Thus

· · · → 3
5 → 2

3 → 5
7 → · · ·

is observed in [11].

Each transition contains a critical point given byγ (σ ∗). Thus if γ =
(
a b

2c d

)
, the

critical point is at

σ ∗γ =
2ac + 2bc + ad + 2bd + i

2d2 + 4cd + 4c2
= (p1q1 + p2q2) + i

(q2
1 + q2

2)
(2)

when the transition goes fromν1 = γ (0) = b/d = p1/q1 to ν2 = γ (1) = a+b
2c+d = p2/q2.

The parameters ofγ can be related to physical parameters as follows. Following [5], letη be
the effective charge of the quasi-holes of a Hall state,e∗ = η, θ the statistical parameter (i.e.
the phase of the two quasi-particle wavefunction changes byπθ when the positions of the two
particles are exchanged) ands be the Hall state, with magic filling factorν = s. Then the
critical conductivity for a transition froms = ν to s ′ = ν − η2/θ is given by equation (26) of
[5] (in dimensionless units)

σxx = η2

1 + θ2
σxy = s − θ η2

1 + θ2
. (3)

Equating these with the critical values in equation (2), there are two possibilities, depending
on whetherν = γ (1) or γ (0):

(i) ν = a + b

2c + d
= p2

q2
θ = d

2c + d
= q1

q2
η2 = 1

(2c + d)2
= 1

q2
2

(4)

(ii) ν = b

c
= p1

p2
θ = − (2c + d)

d
= −q2

q1
η2 = 1

d2
= 1

q2
1

. (5)



Letter to the Editor L247

Table 1. Some examples of allowed transitions. The matrixγ maps the pointsσ = 0 andσ = 1
to the transition indicated in the leftmost column. Some representative experimental support (not
exhaustive) is also indicated. The last two columns assume the semicircle law (ρ is the resistivity).

Transition Critical Critical
ν1→ ν2 γ conductivity resitivity σ atσMaxxx ρ atρMaxxx

n + 1→ n

(
1 n

0 1

)
(2n+1)+i

2
(2n+1)+i
2n2+2n+1

(a) (2n+1)+i
2

(2n+1)+i
2n(n+1)

(b)

1
2n+1 → 0

(
1 0
2n 1

)
(2n+1)+i

2(2n2+2n+1)

(c)
(2n + 1) + i(d) 1+i

2(2n+1) (2n + 1) + i∞
n

2n+1 → n+1
2n+3

(
1 n

2 2n + 1

)
(4n2+6n+3)+i
2(4n2+8n+5)

(4n2+6n+3)+i
2n2+2n+1

(4n2+6n+1)+i
2(2n+1)(2n+3)

(4n2+6n+1)+i
2n(n+1)

(e)

3n+2
4n+3 → 3n+5

4n+7

(
3 3n + 2
4 4n + 3

)
(24n2+58n+41)+i
2(16n2+40n+29)

(24n2+58n+41)+i
18n2+42n+29

(24n2+58n+29)+i
2(4n+3)(4n+7)

(24n2+58n+29)+i
2(3n+2)(3n+5)

(f )

(a) These points all lie on the semicircleρ = i − eiθ , 06 θ 6 π . Forn = 1 see [21].
(b) Assumesn 6= 0.
(c) These points all lie on the semicircleσ = 1

2(i − eiθ ), 06 θ 6 π .
(d) Forn = 0 see [22] and [23], forn = 1 see [22] and [24], forn = 2 see [25].
(e) Assumesn 6= 0. Forn = 1, . . . ,5 andn = −3, . . . ,−7 see [14].
(f ) Forn = 0 see [14].

In both cases we reproduce the result, thatη = ±1/q, [12] and [13]. Note in passing
that the transition from bosonic to fermionic conductivities given by equation (14) of [4]
is implemented by the action of an element of0(1) which is not in00(2). Thusσ = γ (σ (b))
whereσ (b) = σ (b)xy + iσ (b)xx is the complex conductivity of the bosonic Chern–Simons action

andγ = 1
η

(
η2 − θs s

−θ 1

)
. The above discussion gives the explicit connection between the

Chern–Simons analysis of [4] and the group theory analysis of [2].
We make a final comment about the ‘semicircle’ law of [14–16]. By assumption, each

quantum Hall transition can be obtained from the one between 0 and 1, passing through
σ ∗ = 1+i

2 , by the action of some element of00(2). Since00(2) maps semicircles built on
the real axis into other such semicircles we can deduce the ‘semicircle law’ of [14–16] by
making one extra assumption—that the ‘fundamental’ arch between 0 and 1 is a semicircle.
This implies thatall other transitions are semicircles and allows predictions to be made of
the maximum values ofσxx andρxx in any allowed transition,ν1→ ν2, as well as the values
of σxy andρxy at which they occur. Thus the maximum value ofσxx is at σmaxxx = ν1−ν2

2 ,
whereσxy = ν1+ν2

2 (whereν1 > v2). In general, this does not coincide with the critical value
σ ∗γ = γ (σ ∗), except for the integer transitions (table 1).

The maximum value ofρxx is found by constructing the semicircle through1
ν1

and 1
ν2

(provided neither vanishes). Thusρmaxxx = 1
2(

1
ν2
− 1

ν1
), whereρxy = 1

2(
1
ν2

+ 1
ν1
). Some

representative examples are shown in table 1.
To summarize, assuming (as in [3]) that the phase and flow diagram for the upper-half

complex conductivity plane can be generated from an action of00(2) which commutes with
the RG, one deduces: (i) that all critical points are given byγ (σ ∗), whereσ ∗ = 1+i

2 , with
γ ∈ 00(2); (ii) the phase diagram of [4, 2, 8]; (iii) the laws of corresponding states [4, 5]; and
(iv) the selection rule|p1q2 − p2q1| = 1, dictating which transitions are allowed and which
are forbidden. Lastly, the semicircle law of [14–16] is compatible with, but not implied by,
00(2).

It should be noted that the full modular group doesnotprovide the correct phase structure,
since it would imply further critical points at the images ofσ = i and σ = 1+i

√
3

2 , under
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γ ∈ 0(1), which are not observed experimentally. The appearance of00(2) is due to the
extension of Kramers–Wannier dualityσxx → 1/σxx to the whole complex plane. It was
argued in [17] that this extension leads naturally to0(1) acting on the upper-half complex
plane, for a coupled clock model. This was applied to the quantum Hall effect in [18, 19].
It appears to have been noted first in [2] that the subgroup00(2) has the special property of
preserving the parity of the denominator for rationalν = p/q. The subgroup0(2), consisting
of all elements of0(1) which are congruent to the identity, mod 2, was also considered in
[2] and has been further investigated in [20]. Note, however, that there is no element of0(2)
which leavesσ ∗ = 1+i

2 fixed, indeed there is no element of0(2) which leavesany σ with
∞ > Im(σ ) > 0 fixed.

It is a pleasure to thank Jan Pawlowski for discussions about the RG flow of the quantum Hall
effect.
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